Abstract

The hybrid laminar composite stack of carbon fiber reinforced polymer (CFRP) and titanium (Ti) are widely used in several critical engineering applications, including aerospace and automobile sectors. The joining of CFRP and Ti through conventional methods has several limitations such as weight additional, material damage, and lower fatigue life. Ultrasonic additive manufacturing (UAM) is a solid-state manufacturing process capable of joining layers of dissimilar materials. Experimental studies have successfully demonstrated the welding of CFRP and Ti through UAM process. However, there is a lack of understanding of the exact bonding process and influence of process parameter on weld quality during UAM. The present study investigates the bonding process and the effects of critical parameters in the UAM process of CFRP and Ti layers using finite element analysis and simulation technique. The simulation study reveals that the CFRP/titanium stacks encounter interfacial cyclic shear stresses and shear strains. The study found that the vibrational amplitude and surface roughness of the substrates play a critical role in achieving a proper weld. The simulation results are validated using experimentation. The finding of this study can help advance the commercialization of UAM process for welding dissimilar materials and composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call