Abstract

The safety of underground engineering projects is significantly influenced by groundwater. One of the key complexities is identifying the primary seepage paths within underground rock formations, understanding the patterns of seepage, and determining the effects of fracture parameters on the fluid movement inside the rock mass. To address these issues, a probabilistic model is constructed for random fractures using the finite element method, reflecting the random nature of fracture distributions in the real world. This model allows for an in-depth examination of the distribution of pore water pressure and Darcy velocity field, revealing the permeability trends in fractured rock masses. A variety of fracture models were devised to understand the relationship between factors such as fracture density, length, length power law, angle, dispersion coefficient, aperture, and power law, and how they affect the overall permeability of rock masses. The study suggests that, in the context of discrete fractured rock masses, there is a linear increase in permeability with an increase in fracture density and aperture. Moreover, fractures of greater length lead to increased permeability, with fractures aligned with the direction of water pressure having the most impact on seepage velocity. A thorough investigation of the factors that affect each fracture parameter was performed, and the permeability of each model was computed. From these findings, a series of predictive equations were suggested for estimating rock permeability based on fracture geometry parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call