Abstract

This work evaluates the shear strength of pyramidal fin arrays made from various feedstock materials (cylindrical aluminum, spherical nickel, and cylindrical stainless steel 304 powders) deposited on an Al6061-T6 substrate. Higher shear strength was measured for the nickel fin array followed by the stainless steel 304 and the aluminum arrays. Different failure modes were observed by inspecting the fracture surfaces under Scanning Electron Microscope. Deposition between the cold sprayed nickel and stainless fins was detected whereas dimples were noticed on the substrate between the fins when aluminum is used as the feedstock material. A numerical simulation of normal and angled impacts using the high strain rate Preston-Tonks-Wallace model was carried out in order to have a better understanding of the experimental results. The equivalent plastic strain (PEEQ) obtained from the finite element analysis at normal impact correlates with the different shear strengths measured experimentally. Furthermore, even if a higher PEEQ was observed for angled impacts compared to its normal collision counterpart, it is suggested that the particles may not bond because of the rotational restitution momentum caused by the tangential friction generated during angled impacts. This rotational restitution momentum was not detected for particle impacts normal to the substrate surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call