Abstract

Background and ObjectiveThe dental implant is one of the long term proper remedies to recover a missed tooth as a different prosthetic rehabilitation way. The finite element (FE) method and photoelasticity test are employed to achieve stress distribution and sensitivity in dental implants in order to obtain optimum length and thread pitch. MethodsThe finite element method and experimental test are developed to evaluate stress distribution and sensitivity around dental implants. Three dimensional FE models of implant-abutment, cortical bone and cancellous bone are created by considering a variation of 0.6 to –1 mm on threads pitch while the implant lengths range from 8.5 mm to 13 mm. Then, axial and oblique forces are applied to the models to obtain the resultant stress contours. ResultsThe results indicate that the resultant von Mises stresses in the implant-abutment, cortical bones, and cancellous bones are different. The optimized setting for length and pitch is suggested according to maximum von Mises stress and sensitivity analysis. ConclusionsIt is concluded that the present FE model accurately predicts stress distribution pattern in dental implants. The results indicate that sensitivity of length play a more significant role in comparison with thread pitch. The accuracy of FEM results in comparison with those of the photoelasticity test recommends applying computation methods in medical practice as great potential in terms of future studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.