Abstract

The solid I section beam with creating hexagonal cavities (openings) has numerous advantages over conventional rolled sections. As they are light weight, strong, cheap and elegant. The opening in the web simplifies the work of the installer and the electrician, since taking pipes across beams presents no problems. A cellular beam (circular openings) is the modern version of the traditional castellated beam. The beam comprises pronouncedly asymmetric cellular tees, to provide a wide bearing for either pre-cast units or a profiled metal deck. The elastic finite element analysis of castellated beam and cellular beam is carried out to understand its behaviour under load. The failure pattern and stresses developed under same loading condition are studied. Based on the various modes of failure, the applicable methods of analysis are studied which includes plastic analysis, mid post yielding and buckling analysis. From the previous experimental results, one beam is selected and analyzed. Then the no of openings is varied as 2, 4 and 6 in selected beam. The shape of opening is considered as hexagonal and circular of same cross sectional area. The support conditions are considered as fixed, hinged and roller. Overall 18 cases are studied for same central point load and span with change of spacing of openings. The maximum Deflection and the maximum VonMises stress are worked out. The comparative study is carried out using software for finite element analysis ANSYS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call