Abstract

<abstract><p>We discuss computational and qualitative aspects of the fractional Plateau and the prescribed fractional mean curvature problems on bounded domains subject to exterior data being a subgraph. We recast these problems in terms of energy minimization, and we discretize the latter with piecewise linear finite elements. For the computation of the discrete solutions, we propose and study a gradient flow and a Newton scheme, and we quantify the effect of Dirichlet data truncation. We also present a wide variety of numerical experiments that illustrate qualitative and quantitative features of fractional minimal graphs and the associated discrete problems.</p></abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.