Abstract
We consider the question of when delay systems, which are intrinsically infinite dimensional, can be represented by finite dimensional systems. Specifically, we give conditions for when all the information about the solutions of the delay system can be obtained from the solutions of a finite system of ordinary differential equations. For linear autonomous systems and linear systems with time-dependent input we give necessary and sufficient conditions and in the nonlinear case we give sufficient conditions. Most of our results for linear renewal and delay differential equations are known in different guises. The novelty lies in the approach which is tailored for applications to models of physiologically structured populations. Our results on linear systems with input and nonlinear systems are new.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.