Abstract
We study the off-equilibrium critical phenomena across a hysteretic first-order transition in disordered athermal systems. The study focuses on the zero temperature random field Ising model (ZTRFIM) above the critical disorder for spatial dimensions $d=2,3,$ and $4$. We use Monte Carlo simulations to show that disorder suppresses critical slowing down in phase ordering time for finite-dimensional systems. The dynamic hysteresis scaling, the measure of explicit finite-time scaling, is used to subsequently quantify the critical slowing down. The scaling exponents in all dimensions increase with disorder strength and finally reach a stable value where the transformation is no longer critical. The associated critical behavior in the mean-field limit is very different, where the exponent values for various disorders in all dimensions are similar. The non-mean-field exponents asymptotically approach the mean-field value ($\Upsilon \approx 2/3$) with increase in dimensions. The results suggest that the critical features in the hysteretic metastable phase are controlled by inherent mean-field spinodal instability that gets blurred by disorder in low-dimension athermal systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.