Abstract

The Suzuki algebra $A_{Nn}^{\mu \lambda}$, introduced by Suzuki Satoshi in 1998, is a class of cosemisimple Hopf algebras. It is not categorically Morita-equivalent to a group algebra in general. In this paper, the author gives a complete set of simple Yetter-Drinfeld modules over the Suzuki algebra $A_{N\,2n}^{\mu\lambda}$ and investigates the Nichols algebras over those simple Yetter-Drinfeld modules. The involved finite dimensional Nichols algebras of diagonal type are of Cartan type $A_1$, $A_1\times A_1$, $A_2$, $A_2\times A_2$, Super type ${\bf A}_{2}(q;\I_2)$ and the Nichols algebra $\ufo(8)$. There are $64$, $4m$ and $m^2$-dimensional Nichols algebras of non-diagonal type over $A_{N\,2n}^{\mu \lambda}$. The $64$-dimensional Nichols algebras are of dihedral rack type $\Bbb{D}_4$. The $4m$ and $m^2$-dimensional Nichols algebras $\mathfrak{B}(V_{abe})$ discovered first by Andruskiewitsch and Giraldi can be realized in the category of Yetter-Drinfeld modules over $A_{Nn}^{\mu \lambda}$. Using a result of Masuoka, we prove that $\dim\mathfrak{B}(V_{abe})=\infty$ under the condition $b^2=(ae)^{-1}$, $b\in\Bbb{G}_{m}$ for $m\geq 5$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.