Abstract

We use a finite-difference time-domain (FDTD) approach to describe and control light-induced charge dynamics via two constructs consisting of nanoscale silver cylinders. The charge dynamics is found to be significantly different from the energy dynamics intensively studied in the past in similar systems. It is shown that two-color sources with a tunable relative phase introduce the opportunity to control the charge dynamics via a simple and interesting control mechanism, namely, the time evolution of the charge is directly tied to the instantaneous value of the source fields. Hence, our ability to shape laser pulses and tailor their relative phases and amplitudes translates directly into the possibility of manipulating charge oscillations within metal nanoparticle arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.