Abstract

We employ Finite-Difference Time-Domain (FDTD) simulations to analyze the electromagnetic far- and near-field response of gold nanoparticles (NPs) organized in chain-like structures as function of the number of particles and inter-particle distance in structures. As a result an empirical formula to predict the position of collective localized surface plasmon resonance (LSPR) as function of number of particles in the chain is devised. On the other hand the experimental LSPR spectrum recorded from a colloidal solution exhibiting a certain degree of aggregation has been effectively reconstructed by linear combination of individual LSPR contribution as calculated for NP ensembles of different size (monomers, dimers, trimers, etc.). Notably, we find that the maximum of electric field intensity (E2) in between adjacent NPs increases from dimeric to trimeric and tetrameric ensembles, followed by a steady state decrease as the number of NPs per chain further increases. The central gap in a long chain of NPs accommodate the highest field enhancement (‘hot-spots’). Our findings are relevant for designing effective substrates for Surface-Enhanced Raman Scattering (SERS) and plasmonic waveguides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.