Abstract

The finite-difference time-domain (FDTD) method has been applied to the spectral analysis of scanning tunneling microscope (STM) light emission. We found that FDTD analysis provides predictions that are consistent with those of the dielectric theory of STM light emission if the radius of curvature of the tip front is less than 50 nm. In the radius range above 50 nm, discrepancies between these theories were considerbale in predictions of the efficiency of STM light emission but moderate in those of its spectral shapes. STM light emission spectra of rods and disks embedded in substrates, to which the dielectric theory of STM light emission is not applicable, were calculated by the FDTD method, and we deduced that the spectral features specific to the rod material become distinct when the lateral size of the rod is comparable to or larger than that of localized surface plasmons determined by the dielectric theory of STM light emission; a thickness of 3–5 nm is additionally required for the disk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.