Abstract

<abstract><p>The energy balance ordinary differential equations (ODEs) model of climate change is extended to the partial differential equations (PDEs) model with convections and <italic>q</italic>-diffusions. Instead of integer order second-order partial derivatives, partial <italic>q</italic>-derivatives are considered. The local stability analysis of the ODEs model is established using the Routh-Hurwitz criterion. A numerical scheme is constructed, which is explicit and second-order in time. For spatial derivatives, second-order central difference formulas are employed. The stability condition of the numerical scheme for the system of convection <italic>q</italic>-diffusion equations is found. Both types of ODEs and PDEs models are solved with the constructed scheme. A comparison of the constructed scheme with the existing first-order scheme is also made. The graphical results show that global mean surface and ocean temperatures escalate by varying the heat source parameter. Additionally, these newly established techniques demonstrate predictability.</p></abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.