Abstract

We consider a reaction–diffusion parabolic problem on branched structures. The Hodgkin–Huxley reaction–diffusion equations are formulated on each edge of the graph. The problems are coupled by some conjugation conditions at branch points. It is important to note that two different types of the flux conservation equations are considered. The first one describes a conservation of the axial currents at branch points, and the second equation defines the conservation of the current flowing at the soma in neuron models. We study three different types of finite-difference schemes. The fully implicit scheme is based on the backward Euler algorithm. The stability and convergence of the discrete solution is proved in the maximum norm, and the analysis is done by using the maximum principle method. In order to decouple computations at each edge of the graph, we consider two modified schemes. In the predictor algorithm, the values of the solution at branch points are computed by using an explicit approximation of the conservation equations. The stability analysis is done using the maximum principle method. In the predictor–corrector method, in addition to the previous algorithm, the values of the solution at the branch points are recomputed by an implicit algorithm, when the discrete solution is obtained on each subdomain. The stability of this algorithm is investigated numerically. The results of computational experiments are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.