Abstract

The proper orthogonal decomposition (POD) and the singular value decomposition (SVD) are used to study the finite difference scheme (FDS) for the nonstationary Navier-Stokes equations. Ensembles of data are compiled from the transient solutions computed from the discrete equation system derived from the FDS for the nonstationary Navier-Stokes equations. The optimal orthogonal bases are reconstructed by the elements of the ensemble with POD and SVD. Combining the above procedures with a Galerkin projection approach yields a new optimizing FDS model with lower dimensions and a high accuracy for the nonstationary Navier-Stokes equations. The errors between POD approximate solutions and FDS solutions are analyzed. It is shown by considering the results obtained for numerical simulations of cavity flows that the error between POD approximate solution and FDS solution is consistent with theoretical results. Moreover, it is also shown that this validates the feasibility and efficiency of POD method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.