Abstract

Formation bedding can cause complex wave propagation in a borehole and introduce velocity bias in sonic logs. Because of the lack of symmetry, little is known about sonic wavefields propagating through a dipping bed. In this paper, we investigate effects on the sonic dipole and monopole wavefields across a dipping interface using a 3-D finite‐difference method. For dipole wavefields propagating from a soft to a hard formation across a dipping interface, the transmission is reduced greatly when compared with a horizontal interface. The different transmissions of SV‐ and SH‐waves through the dipping interface result in significant azimuthal amplitude variation and generate large cross‐coupled components. This apparent anisotropy should be taken into account when estimating formation shear anisotropy in a dipping formation. For monopole wavefields, the azimuthal averaging caused by a dipping interface reduces the reflection across an interface. This may affect fracture evaluation using the Stoneley reflection coefficient in a dipping formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.