Abstract

We discuss a finite-difference modeling technique for scalar, two-dimensional wave propagation in a medium containing a large number of small-scale cracks. The embedding medium can be heterogeneous. The boundaries of the cracks are not represented in the finite-difference mesh but the cracks are incorporated as distributed point sources. This enables the use of grid cells that are considerably larger than the crack sizes. We compare our method to an accurate integral-equation solution for the case of a homogeneous embedding and conclude that the finite-difference technique is accurate and computationally fast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call