Abstract
Two-phase, incompressible flow in porous media is governed by a system of nonlinear partial differential equations. Convection physically dominates diffusion, and the object of this paper is to develop a finite difference procedure that reflects this dominance. The pressure equation, which is elliptic in appearance, is discretized by a standard five-point difference method. The concentration equation is treated by an implicit finite difference method that applies a form of the method of characteristics to the transport terms. A convergence analysis is given for the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.