Abstract

The energy dispersion relation of two dimensional hexagonal lattice of GaAs quantum wires embedded in AlwGa1−wAs matrix, called artificial graphene, was calculated by the finite difference method with periodic boundary conditions. The validity of the finite difference based code was checked by comparing the bound state energies of various two dimensional systems with appropriate boundary conditions with analytic solutions or the results obtained by COMSOL software, which uses the finite element method, and a very good agreement was found. The energy dispersion relation calculated for artificial graphene structure shows massless Dirac particles, characteristic for real graphene. Therefore, artificial graphene-like structures have properties similar to those of real graphene, and are tailorable by appropriate structure engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.