Abstract

An analysis is performed to study the transient laminar natural convection flows along an inclined semi-infinite flat plate in which the wall temperatureT w ′ and species concentration on the wallC w ′ vary as the power of the axial co-ordinate in the formT w ′ (x)=T ∞ ′ +ax n andC w ′ =C ∞ ′ +bx m respectively. The dimensionless governing equations considered here are unsteady, two-dimensional, coupled and non-linear integro-differential equations. A finite difference scheme of Crank-Nicolson type is employed to solve the problem. The velocity, temperature, concentration, skin friction, Nusselt number and Sherwood number are studied in detail for various sets of values of parameters. Correlation equations are also established for Nusselt number and Sherwood number in terms of parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.