Abstract

A finite-difference analysis for the transient free convection flow of an incompressible viscous fluid past a vertical cone with variable wall surface temperature T w ′ (x) = T ∞ ′ + a x n varying as power function of distance from the apex (x = 0) is presented here. The dimensionless governing equations of the flow that are unsteady, coupled and non-linear partial differential equations are solved by an efficient, accurate and unconditionally stable finite difference scheme of Crank-Nicolson type. The velocity and temperature fields have been studied for various parameters such as Prandtl number and n (exponent in power law variation in surface temperature). The local as well as average skin-friction and Nusselt number are also presented and analyzed graphically. The present results are compared with available results in literature and are found to be in good agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.