Abstract

SUMMARY We develop a three-dimensional nite-deformation cohesive element and a class of irreversible cohesive laws which enable the accurate and ecient tracking of dynamically growing cracks. The cohesive element governs the separation of the crack anks in accordance with an irreversible cohesive law, eventually leading to the formation of free surfaces, and is compatible with a conventional nite element discretization of the bulk material. The versatility and predictive ability of the method is demonstrated through the simulation of a drop-weight dynamic fracture test similar to those reported by Zehnder and Rosakis. 1 The ability of the method to approximate the experimentally observed crack-tip trajectory is particularly noteworthy. Copyright ? 1999 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.