Abstract

An exact elasto-plastic analytical solution for a finitely deformed plane strain wide plate of elastic linear-hardening material subjected to pure bending is derived in this paper using a tensorial formulation. This solution is based on a finite-strain version of Hencky's deformation theory, the von Mises yield criterion and the incompressibility assumption. The Hencky (logarithmic) strain tensor is adopted to measure the finite deformations, with the undeformed flat plate as the reference configuration. The constitutive relations are derived in tensor form using the Hencky strain and the Cauchy stress. With both the linear-elastic and strain-hardening-plastic material responses included, the present solution can represent the whole bending process of the plate from its initial flat state to its final curved state with arbitrarily large deformation. It is shown that this solution exhibits general characteristics, from which three specific solutions of practical value can be obtained. Being expressed in both tensor and component forms, the present exact solution for the stress and strain fields furnishes a new and systematic analytical pattern for the elasto-plastic analysis and strength design of a strain-hardening wide plate subjected to large-deformation pure bending.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.