Abstract

A finite deformation theory of mechanism-based strain gradient (MSG) plasticity is developed in this paper based on the Taylor dislocation model. The theory ensures the proper decomposition of deformation in order to exclude the volumetric deformation from the strain gradient tensor since the latter represents the density of geometrically necessary dislocations. The solution for a thin cylinder under large torsion is obtained. The numerical method is used to investigate the finite deformation crack tip field in MSG plasticity. It is established that the stress level around a crack tip in MSG plasticity is significantly higher than its counterpart (i.e. HRR field) in classical plasticity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.