Abstract
Abstract Let $f,g$ be $C^2$ expanding maps on the circle which are topologically conjugate. We assume that the derivatives of f and g at corresponding periodic points coincide for some large period N. We show that f and g are ‘approximately smoothly conjugate.’ Namely, we construct a $C^2$ conjugacy $h_N$ such that $h_N$ is exponentially close to h in the $C^0$ topology, and $f_N:=h_N^{-1}gh_N$ is exponentially close to f in the $C^1$ topology. Our main tool is a uniform effective version of Bowen’s equidistribution of weighted periodic orbits to the equilibrium state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.