Abstract

In this paper, we have studied a model of finite linear Mode-I crack in a thermoelastic transversely isotropic medium under Green Naghdi theory. The crack is subjected to a prescribed temperature and a known tensile stress. The plane boundary surface is considered as isothermal and all the field variables are sufficiently smooth. The heat conduction equation is written under two temperature theory (2TT) for Green Naghdi model which contains absolute temperature as well as conductive temperature. The analytical expressions of displacement components, stress components and temperature variables are obtained by normal mode analysis and matrix inversion method. Comparisons have been made within Green Naghdi (G-N) theory of type I, type II and type III for displacement, stress and absolute temperature variables against the crack width for a transversely isotropic material (Cobalt) by virtues of graphs. Also, Comparison have been made among displacement, thermal stress and absolute temperature for different depths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.