Abstract

We investigate choice principles in the Weihrauch lattice for finite sets on the one hand, and convex sets on the other hand. Increasing cardinality and increasing dimension both correspond to increasing Weihrauch degrees. Moreover, we demonstrate that the dimension of convex sets can be characterized by the cardinality of finite sets encodable into them. Precisely, choice from an n+1 point set is reducible to choice from a convex set of dimension n, but not reducible to choice from a convex set of dimension n-1. Furthermore we consider searching for zeros of continuous functions. We provide an algorithm producing 3n real numbers containing all zeros of a continuous function with up to n local minima. This demonstrates that having finitely many zeros is a strictly weaker condition than having finitely many local extrema. We can prove 3n to be optimal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call