Abstract

We consider first order cosmological phase transitions (PTs) happening at late times below standard model temperatures TPT≲GeV. The inherently stochastic nature of bubble nucleation and the finite number of bubbles associated with a late-time PT lead to superhorizon fluctuations in the PT completion time. We compute how such fluctuations eventually source curvature fluctuations with universal properties, independent of the microphysics of the PT dynamics. Using cosmic microwave background (CMB) and large scale structure measurements, we constrain the energy released in a dark-sector PT. For 0.1 eV≲TPT≲keV this constraint is stronger than both the current bound from additional neutrino species ΔNeff, and in some cases, even CMB-S4 projections. Future measurements of CMB spectral distortions and pulsar timing arrays will also provide competitive sensitivity for keV≲TPT≲GeV. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.