Abstract

We introduce the notion of finite BRST–anti-BRST transformations for constrained dynamical systems in the generalized Hamiltonian formalism, both global and field-dependent, with a doublet λa, a = 1, 2, of anticommuting Grassmann parameters and find explicit Jacobians corresponding to these changes of variables in the path integral. It turns out that the finite transformations are quadratic in their parameters. Exactly as in the case of finite field-dependent BRST–anti-BRST transformations for the Yang–Mills vacuum functional in the Lagrangian formalism examined in our previous paper [arXiv:1405.0790 [hep-th]], special field-dependent BRST–anti-BRST transformations with functionally-dependent parameters λa= ∫ dt(saΛ), generated by a finite even-valued function Λ(t) and by the anticommuting generators saof BRST–anti-BRST transformations, amount to a precise change of the gauge-fixing function for arbitrary constrained dynamical systems. This proves the independence of the vacuum functional under such transformations. We derive a new form of the Ward identities, depending on the parameters λaand study the problem of gauge dependence. We present the form of transformation parameters which generates a change of the gauge in the Hamiltonian path integral, evaluate it explicitly for connecting two arbitrary Rξ-like gauges in the Yang–Mills theory and establish, after integration over momenta, a coincidence with the Lagrangian path integral [arXiv:1405.0790 [hep-th]], which justifies the unitarity of the S-matrix in the Lagrangian approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.