Abstract

Abstract This paper proves the finite axiomatizability of transitive modal logics of finite depth and finite width w.r.t. proper-successor-equivalence. The frame condition of the latter requires, in a rooted transitive frame, a finite upper bound of cardinality for antichains of points with different sets of proper successors. The result generalizes Rybakov’s result of the finite axiomatizability of extensions of $\mathbf {S4}$ of finite depth and finite width.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.