Abstract

We systematically analyse the mechanical deformation behaviour, in particular Poisson's ratio, of floppy bar-and-joint frameworks based on periodic tessellations of the plane. For frameworks with more than one deformation mode, crystallographic symmetry constraints or minimization of an angular vertex energy functional are used to lift this ambiguity. Our analysis allows for systematic searches for auxetic mechanisms in archives of tessellations; applied to the class of one- or two-uniform tessellations by regular or star polygons, we find two auxetic structures of hexagonal symmetry and demonstrate that several other tessellations become auxetic when retaining symmetries during the deformation, in some cases with large negative Poisson ratios ν <−1 for a specific lattice direction. We often find a transition to negative Poisson ratios at finite deformations for several tessellations, even if the undeformed tessellation is infinitesimally non-auxetic. Our numerical scheme is based on a solution of the quadratic equations enforcing constant edge lengths by a Newton method, with periodicity enforced by boundary conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.