Abstract
The main theme of this paper is the enumeration of the order-isomorphic occurrence of a pattern in words and permutations. We mainly focus on asymptotic properties of the sequence , the number of n-array k-ary words that contain a given pattern v exactly r times. In addition, we study the asymptotic behavior of the random variable Xn , the number of pattern occurrences in a random n-array word. The two topics are closely related through the identity . In particular, we show that for any r ≥ 0, the Stanley-Wilf sequence converges to a limit independent of r, and determine the value of the limit. We then obtain several limit theorems for the distribution of Xn , including a central limit theorem, large deviation estimates, and the exact growth rate of the entropy of Xn . Furthermore, we introduce a concept of weak avoidance and link it to a certain family of non-product measures on words that penalize pattern occurrences but do not forbid them entirely. We analyze this family of probability measures in a small parameter regime, where the distributions can be understood as a perturbation of a uniform measure. Finally, we extend some of our results for words, including the one regarding the equivalence of the limits of the Stanley-Wilf sequences, to pattern occurrences in permutations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.