Abstract
The present paper reviews the theory of bounded Jacobi matrices whose essential spectrum is a finite gap set, and it explains how the theory can be extended to also cover a large number of infinite gap sets. Two of the central results are generalizations of Denisov–Rakhmanov’s theorem and Szegő’s theorem, including asymptotics of the associated orthogonal polynomials. When the essential spectrum is an interval, the natural limiting object \( J_0 \) has constant Jacobi parameters. As soon as gaps occur, \(\ell\) say, the complexity increases and the role of \( J_0 \) is taken over by an \(\ell\)-dimensional isospectral torus of periodic or almost periodic Jacobi matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.