Abstract

Non-overshooting stabilization is a form of safe control where the setpoint chosen by the user is at the boundary of the safe set. In this paper we develop homogeneous feedback laws for fixed-time nonovershooting stabilization for nonlinear systems that are input-output linearizable with a full relative degree, i.e., for systems that are diffeomorphically equivalent to the chain of integrators. These homogeneous feedback laws can also assume the secondary role of ‘fixed-time safety filters’ (FxTSf filters) which keep the system within the closed safe set for all time but, in the case where the user's nominal control commands approach to the unsafe set, allow the system to reach the boundary of the safe set no later than a desired time that is independent of nominal control and independent of the value of the state at the time the nominal control begins to be overridden.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.