Abstract

This paper deals exclusively with finite amplitude motions in viscoelastic materials for which the stress is the sum of a part corresponding to the classical Mooney–Rivlin incompressible isotropic elastic solid and of a dissipative part corresponding to the classical viscous incompressible fluid. Of particular interest is a finite pseudoplanar elliptical motion which is an exact solution of the equations of motion. Superposed on this motion is a finite shearing motion. An explicit exact solution is presented. It is seen that the basic pseudoplanar motion is stable with respect to the finite superposed shearing motion. Particular exact solutions are obtained for the classical neo-Hookean solid and also for the classical Navier–Stokes equations. Finally, it is noted that parallel results may be obtained for a basic pseudoplanar hyperbolic motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.