Abstract
The long-wave perturbation method is employed to investigate the weakly nonlinear hydrodynamic stability of a thin Bingham liquid film flowing down a vertical wall. The normal mode approach is first used to compute the linear stability solution for the film flow. The method of multiple scales is then used to obtain the weak nonlinear dynamics of the film flow for stability analysis. It is shown that the necessary condition for the existence of such a solution is governed by the Ginzburg–Landau equation. The modeling results indicate that both the subcritical instability and supercritical stability conditions can possibly occur in a Bingham liquid film flow system. For the film flow in stable states, the larger the value of the yield stress, the higher the stability of the liquid film. However, the flow becomes somewhat unstable in unstable states as the value of the yield stress increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.