Abstract
The purely elastic stability and bifurcation of the one-dimensional plane Poiseuille flow is determined for a large class of Oldroyd fluids with added viscosity, which typically represent polymer solutions composed of a Newtonian solvent and a polymeric solute. The problem is reduced to a nonlinear dynamical system using the Galerkin projection method. It is shown that elastic normal stress effects can be solely responsible for the destabilization of the base (Poiseuille) flow. It is found that the stability and bifurcation picture is dramatically influenced by the solvent-to-solute viscosity ratio, ε. As the flow deviates from the Newtonian limit and ε decreases below a critical value, the base flow loses its stability. Two static bifurcations emerge at two critical Weissenberg numbers, forming a closed diagram that widens as the level of elasticity increases. [S0021-8936(00)00703-0]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.