Abstract

In this paper the nonlinear behaviour of the m = 0 torsional hydromagnetic wave is analyzed. Two cases have been considered: the nonlinear self-interaction of a single torsional wave and the nonlinear interaction of two identical, oppositely propagating torsional waves. In the first case the nonlinear terms in Ohm's law and the equation of motion generate a second order perturbation which accompanies the primary wave and has two components: a steady component and an oscillatory component having twice the frequency of the primary torsional wave. In the second case studied the self and cross-interactions of the two waves again generate a second order perturbation field. The existence of certain critical wavelengths, at which geometric resonances of the perturbation occur, is established.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call