Abstract

Recent progress in formulating Boussinesq-type equations includes improved features of linear dispersion and higher-order nonlinearity. Nonlinear characteristics of these equations have been previously analysed on the assumption of weak nonlinearity, being therefore limited to moderate wave height. The present work addresses this aspect for an important class of wave problems, namely, regular waves of permanent form on a constant depth. Using a numerical procedure which is valid up to the maximum wave height, permanent-form waves admitted by three sets of advanced Boussinesq-type equations are analysed. Further, the characteristics of each set of the Boussinesq-type equations are discussed in the light of those from the potential theory satisfying the exact free-surface conditions. Phase velocity, amplitude dispersion, harmonic amplitudes (namely, second and third) and skewness of surface profile are shown over a two-parameter space of frequency and wave height.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.