Abstract
We propose finite-alphabet equalization, a new paradigm that restricts the entries of the spatial equalization matrix to low-resolution numbers, enabling high-throughput, low-power, and low-cost hardware equalizers. To minimize the performance loss of this paradigm, we introduce FAME, short for finite-alphabet minimum mean-square error (MMSE) equalization, which is able to significantly outperform a naive quantization of the linear MMSE matrix. We develop efficient algorithms to approximately solve the NP-hard FAME problem and showcase that near-optimal performance can be achieved with equalization coefficients quantized to only 1-3 bits for massive multi-user multiple-input multiple-output (MU-MIMO) millimeter-wave (mmWave) systems. We provide very-large scale integration (VLSI) results that demonstrate a reduction in equalization power and area by at least a factor of 3.9× and 5.8×, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.