Abstract
This article addresses the problem of estimating a multivariate linear system from its output when the input is an unobservable sequence of random vectors with finite-alphabet distribution. By explicitly utilizing the finite-alphabet property, an estimation method is proposed under the traditional inverse filtering paradigm as a generalization of a univariate method that has been studied previously. Identifiability of multivariate systems by the proposed method is proved mathematically under very mild conditions that can be satisfied even if the input is nonstationary and has both cross-channel and serial statistical dependencies. Statistical super-efficiency in estimating both parametric and nonparametric systems is also established for an alphabet-based cost function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.