Abstract

A new approach to the design of multivariate public-key cryptalgorithms is introduced. It envisages using non-linear mappings defined as squaring and cubic operations in finite fields represented as finite algebras. The developed approach allows significant reduction of the size of public key and thereby make post-quantum algorithms of multivariate cryptography much more practical. In the developed algorithms, the secret key includes a set of values of structural constants that determine the modifications of the finite fields used and the coefficients in the set of sixth degree polynomials that make up the public key

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.