Abstract
Originating in Girard's Linear logic, Ehrhard and Regnier's Taylor expansion of $\lambda$-terms has been broadly used as a tool to approximate the terms of several variants of the $\lambda$-calculus. Many results arise from a Commutation theorem relating the normal form of the Taylor expansion of a term to its B\"ohm tree. This led us to consider extending this formalism to the infinitary $\lambda$-calculus, since the $\Lambda_{\infty}^{001}$ version of this calculus has B\"ohm trees as normal forms and seems to be the ideal framework to reformulate the Commutation theorem. We give a (co-)inductive presentation of $\Lambda_{\infty}^{001}$. We define a Taylor expansion on this calculus, and state that the infinitary $\beta$-reduction can be simulated through this Taylor expansion. The target language is the usual resource calculus, and in particular the resource reduction remains finite, confluent and terminating. Finally, we state the generalised Commutation theorem and use our results to provide simple proofs of some normalisation and confluence properties in the infinitary $\lambda$-calculus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.