Abstract

Product quality and productivity are important factors in manufacturing industries, especially when dealing with cumbersome materials like titanium. Cooling and lubrication effects offered by the associated metalworking fluid application system play a vital role in determining these factors, especially during finish cutting. Recently, the atomization–based cutting fluid (ACF) spray system has shown promising cooling and lubrication effects during rough turning of titanium at the macro–scale, but yet to be examined during finish cutting (e.g., depth of cut and feed rate 0.2mm or lower). This paper aims to study the effect of the ACF spray system on machining performance during finish turning of Ti-6Al-4V. In the first set of experiments, two spray parameters (viz., gas velocity and flow rate) and cutting parameters (viz., cutting speed, feed rate and depth of cut) are varied to select the most suitable condition for the application of the ACF spray system. Machining outputs are evaluated in terms of nose wear, cutting temperature, surface roughness, roundness error, chip morphology, and part hardness. A separate set of experiments is then performed to compare the performance of the ACF spray system against compressed air (dry) and flood coolant conditions. It is found that, even a lower fluid flow rate of 1.5mL/min (10vol.%) at a lower gas velocity of the spray system outperforms the other two coolant conditions, thus further enhancing the performance of environmentally-friendly manufacturing process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.