Abstract
Klebsiella pneumoniae (K. pneumoniae) exhibits the ability to form biofilms as a means of adapting to its adverse surroundings. K. pneumoniae in this biofilm state demonstrates remarkable resistance, evades immune system attacks, and poses challenges for complete eradication, thereby complicating clinical anti-infection efforts. Moreover, the precise mechanisms governing biofilm formation and disruption remain elusive. Recent studies have discovered that fingolimod (FLD) exhibits biofilm properties against Gram-positive bacteria. Therefore, the antibiofilm properties of FLD were evaluated against multidrug-resistant (MDR) K. pneumoniae in this study. The antibiofilm activity of FLD against K. pneumoniae was assessed utilizing the Alamar Blue assay along with confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and crystal violet (CV) staining. The results showed that FLD effectively reduced biofilm formation, exopolysaccharide (EPS), motility, and bacterial abundance within K. pneumoniae biofilms without impeding its growth and metabolic activity. Furthermore, the inhibitory impact of FLD on the production of autoinducer-2 (AI-2) signaling molecules was identified, thereby demonstrating its notable anti-quorum sensing (QS) properties. The results of qRT-PCR analysis demonstrated that FLD significantly decreased the expression of genes associated with the efflux pump gene (AcrB, kexD, ketM, kdeA, and kpnE), outer membrane (OM) porin proteins (OmpK35, OmpK36), the quorum-sensing (QS) system (luxS), lipopolysaccharide (LPS) production (wzm), and EPS production (pgaA). Simultaneously, FLD exhibited evident antibacterial synergism, leading to an increased survival rate of G. mellonella infected with MDR K. pneumoniae. These findings suggested that FLD has substantial antibiofilm properties and synergistic antibacterial potential for colistin in treating K. pneumoniae infections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.