Abstract

The low-frequency modes of protein hydration water are investigated by inelastic neutron scattering. Experiments on both protonated and fully deuterated maltose binding protein samples allow us to unambiguously single out the contribution from water. The low-energy vibrational density of states of hydration water at 100 K is similar to the density of states of high- and low-density amorphous ice, and quite different from that of simple forms of crystalline ice. This result can be related to the picture of hydration water mass density depending on the protein surface curvature, which supports its glassy behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call