Abstract
BackgroundIdentifying an individual from accelerometry data collected during walking without reliance on step-cycle detection has not been achieved with high accuracy. Research questionWe propose an open-source reproducible method to: (1) create a unique, person-specific “walking fingerprint” from a sample of un-landmarked high-resolution data collected by a wrist-worn accelerometer; and (2) predict who an individual is from their walking fingerprint. MethodsAccelerometry data were collected during walking from 32 individuals (23–52 y.o., 19 females) for at least 380 s each. For this study's purpose, data are not landmarked, nor synchronized. Individual walking fingerprints were created by: (1) partitioning the accelerometer time series in adjacent, non-overlapping one-second intervals; (2) transforming all one-second interval data for a given individual into a three-dimensional (3D) image obtained by plotting each one-second interval time series by the lagged time series for a series of lags; (3) partitioning these resulting participant-specific 3D images into a grid of cells; and (4) identifying the combinations of cells (areas in the 3D image) that best predict the individual. For every participant, the first 200 s of data were used as training and the last 180 s as testing. This approach does not use segmentation methods for individual strides, which reduces dependence on complementary algorithms and increases its generalizability. ResultsThe method correctly identified 100 % of the participants in the test data and highlighted unique features of walking that characterize the individuals. SignificancePredicting the identity of an individual from their walking pattern has immediate implications that can complement or replace those of actual fingerprinting, voice, and image recognition. Furthermore, as walking may change with age or disease burden, individual walking fingerprints may be used as biomarkers of change in health status with potential clinical and epidemiologic implications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.