Abstract

The flow curves of linear (linear-low and high density) and branched polyethylenes are known to differ significantly. At increasing shear rates, the linear polymers exhibit a surface melt fracture or sharkskin region that is followed by an unstable oscillating or stick-slip flow regime when a constant piston speed capillary rheometer is used. At even higher shear rates, gross melt fracture appears. Unlike their linear counterparts, branched polyethylenes rarely exhibit sharkskin melt fracture and although gross melt fracture appears at high shear rates there is no discontinuity in their flow curve. The various flow regimes of these two types of polyethylenes are examined by performing experiments in the melt state using a unique extensional rheometer (the SER by Xpansion Instruments) that is capable of performing accurate extensional flow and peel experiments at very high rates not previously realized. The peel strength curves of these linear and branched polyethylenes exhibit all of the distinct flow regimes exhibited in their respective flow curves, thereby providing a fingerprint of their melt flow behavior. Moreover, these extensional flow and peel results in the melt state provide insight into the origins and mechanisms by which these melt flow phenomena may occur with regard to rapid tensile stress growth, melt rupture, and adhesive failure at the polymer wall interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.