Abstract
RNA function is determined by its structural organization. The RNA structure consists of the combination of distinct secondary structure motifs connected by junctions that play an essential role in RNA folding. Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) probing is an established methodology to analyze the secondary structure of long RNA molecules in solution, which provides accurate data about unpaired nucleotides. However, the residues located at the junctions of RNA structures usually remain undetected. Here we report an RNA probing method based on the use of a novel open-paddlewheel diruthenium (OPW-Ru) compound [Ru2Cl2(µ-DPhF)3(DMSO)] (DPhF = N,N′-diphenylformamidinate). This compound has four potential coordination sites in a singular disposition to establish covalent bonds with substrates. As a proof of concept, we have analyzed the reactivity of OPW-Ru toward RNA using two viral internal ribosome entry site (IRES) elements whose function depends on the structural organization of the molecule. Our study suggests that the compound OPW-Ru preferentially attacks at positions located one or two nucleotides away from junctions or bulges of the RNA structure. The OPW-Ru fingerprinting data differ from that obtained by other chemical reagents and provides new information about RNA structure features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.