Abstract

We present a quantitative approach to the self-dynamics of polymers under steady flow by employing a set of complementary reference frames and extending the spherical harmonic expansion technique to dynamic density correlations. Application of this method to nonequilibrium molecular dynamics simulations of polymer melts reveals a number of universal features. For both unentangled and entangled melts, the center-of-mass motions in the flow frame are described by superdiffusive, anisotropic Gaussian distributions, whereas the isotropic component of monomer self-dynamics in the center-of-mass frame is strongly suppressed. Spatial correlation analysis shows that the heterogeneity of monomer self-dynamics increases significantly under flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.